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Inductive Visual Localisation: Factorised
Training for Superior Generalisation

Ankush Gupta, Andrea Vedaldi and Andrew Zisserman
University of Oxford




Introduction

RNNSs have poor generalization to sequence lengths beyond
those in the training set

Ex. counting




Stop? 0 0 0 1

Training

Total count = 3

Stop? 0 0 0 0 1

Testing
Total count = 6




Proposed Approach

Mathematical induction: allows sequences to be analysed or
generated ad infinitum

Train recurrent networks with the explicit notion of induction




Method

To generalise correctly to sequences of arbitrary lengths, an
iterative algorithm must maintain a suitable invariant. Ex. list
of objects visited so far

Proposed Method: Restrict the recurrent state to a spatial
memory map (m.) which keeps track of the parts of the input
image which have already been explored




Method

m € R"™Wisimplemented as a single 2D map of the same
dimensions as the image x

Focus is on sequence prediction tasks where each token in the
sequence corresponds to a 2D location in the image

Am, is trained to encode the 2D location in the image
associated with sequence label y,




Method
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Training and Inference

The model is trained for one-step predictions, where each

training sample is a tuple — (x,y,,m_,m,, ,)

Minimize loss:

—log p(y, |x.,m) +y||m +Am -m_| |22




Experiments

1) Recognising multiple lines of text
2) Counting by Enumeration




Recognising Multiple Lines of
Text

# lines— 1 2 3 4 5 6 ¥ 8 9 10
precision 66.69 63.97 59.23 53.70 - - - - - -
end-to-end recall 69.27 65.50 56.52 39.14 - - - - - -
ED 1591 17.81 25.08 43.78 - - - - - -
precision 85.13 84.79 85.57 87.25 8732 86.11 8541 85.51 84.57 84.41
inductive recall 84.89 84.74 8532 8699 87.22 8591 84.43 84.03 8047 76.80
ED 6.76 749 7.09 6.29 S 6.96 A 911 1318 17.23




Counting by Enumeration

Dtk Model Number of Objects
3 4 5 6 i 8 9 10
S end-to-end 99.53 9953 9893 0 0 0 0 0
Oloured Shapes 4 ductive 100 99.89 9952 9893 97.18 98.47 9548 95.45
DOTA end-to-end 82.00 70.50 74.80 0 0 0 0 0

inductive 8250 79.00 7550 7250 69.00 43.81 3221 29.20




VSE++: Improving Visual-Semantic
Embeddings with Hard Negatives

Fartash Faghri, David J. Fleet, Jamie Ryan Kiros and Sanja Fidler
University of Toronto, Google Brain




Introduction

Focus is on visual-semantic embeddings for cross-modal
retrieval; i.e. the retrieval of images given captions, or of
captions for a query image

Performance is measured by R@K, i.e., recall at K - the
fraction of queries for which the correct item is retrieved in
the closest K points to the query in the embedding space

The correct target(s) should be closer to the query than other
items in the corpus




Introduction

New technique for learning visual-semantic embeddings for
cross-modal retrieval

Uses the concept of hard negatives in common loss functions




Visual Semantic Embedding

Features for image i: (p(i;e(p)

Features for caption c: Lp(c;ew)

Projection into joint embedding space:
fisWr, 8y) = Wio(i;6)
g(c;We, 0y) = W, y(c;6y)




Visual Semantic Embedding

Similarity function:

s(ic) = f(i Wy, 0p) - 8(c: Wy, 6y)

We minimize cumulative loss:

N
e(0,S) =+ Z (i, cn)

pi=il




Loss Function

Traditional hinge based triplet loss function:
BSHO?C) — Z[a o S(i,C) +S(laé)]+ 2 Z[(X T S(i,C) +S(;7 C)]-I—

Proposed modification:

un(isc) = max |o+s(i,c") —s(i,c)| | + max o +s(i',c) —s(ic))

C l T




Loss Function

Puts emphasis on hard negatives, i.e. the negatives closest to
each training query

Hardest negatives are given by
i = argmax, s(j, c)
And

¢’ =argmax,,__s(i,d)




Loss Function
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Experiments

# Model Trainset Caption Retrieval Image Retrieval
R@1 R@5 R@10 Medr R@1 R@5 R@10 Medr
1K Test Images
| UVS (3], GitHub) | IC (1 fold) | 434  75.7 85.8 2 31.0  66.7 799 3
1.2 Order ([E]) 10C+rV 46.7 - 88.9 2.0 379 - 85.9 2.0
1.3 | Embedding Net ([E2]) 10C+rV 504 793 69.4 - 398 753 86.6 -
1.4 sm-LSTM ([I3A]) 2 532 83.1 91.5 | 40.7 75.8 87.4 2
1.5 2WayNet ([B]) 10C+rv 558 152 - - 39.7 633 - -
1.6 VSE++ IC(1fold) | 43.6 74.8 84.6 2.0 33.7 68.8 81.0 3.0
1.7 VSE++ RC 49.0 79.8 88.4 1.8 31 722 83.8 2.0
1.8 VSE++ RC+rV 518 8l.5 90.4 1.0 395 74.1 85.6 2.0
1.9 VSE++ (FT) RC+rV 572 86.0 93.3 1.0 459 794 89.1 2.0
1.10 VSE++ (ResNet) RC+rV 58.3  86.1 93.3 1.0 43.6 717.6 87.8 2.0
1.11 | VSE++ (ResNet, FT) RC+rV 646 90.0 957 1.0 520 843 92.0 1.0
5K Test Images
1.12 Order ([EQ]) 10C+rV 233 - 65.0 5.0 18.0 - 57.6 7.0
L13 VSE++ (FT) RC+rV 329 617 74.7 3.0 241 528 66.2 5.0
1.14 | VSE++ (ResNet, FT) RC+rV 413 711 81.2 2.0 303 594 72.4 4.0



Experiments

# Model Trainset Caption Retrieval Image Retrieval
R@1 R@5 R@10 Medr R@1 R@5 R@10 Medr
21 uvs ((3@]) 1C 23.0 50.7 62.9 3 16.8  42.0 565 8
32 UVS (GitHub) 1C 298 584 70.5 4 220 479 39.5 6
3.3 | Embedding Net ([E2]) 10C 40.7  69.7 19.2 - 292 59.6 i1 -
34 DAN ([&3a]) . 414 735 82.5 2 38 'BLF 125 3
35 sm-LSTM ([I3]) . 425 719 81.5 2 302 604 12.3 3
3.6 2WayNet ([B]) 10C 498 67.5 - - 36.0 55.6 - -
3.7 | DAN (ResNet) ([E]) e 550 818 89.0 1 394 692 7941 2
3.8 VSEO 1C 29.8 59.8 71.9 3.0 23.0 488 61.0 6.0
39 VSEO RC 31.6 59.3 L7 4.0 21.6: 50.7 63.8 5.0
3.10 VSE++ 1€ 319 584 68.0 4.0 23.1 492 60.7 6.0
3.11 VSE++ RC 38.6 64.6 74.6 2.0 26.8 549 66.8 4.0
3.12 VSEO (FT) RC 374 654 11.2 3.0 268 57.6 69.5 4.0
3.13 VSE++ (FT) RC 413  69.1 T1.9 2.0 314  60.0 71.2 3.0
3.14 VSEO (ResNet) RC 36.6 67.3 78.4 3.0 233 526 66.0 5.0
315 VSE++ (ResNet) RC 43.7 T71.9 82.1 2.0 323 609 T2l 3.0
3.16 VSEO (ResNet, FT) RC 421 732 84.0 2.0 31.8 626 74.1 3.0
3.17 | VSE++ (ResNet, FT) RC 529 805 87.2 1.0 396 70.1 795 2.0




Experiments

Caption Retrieval R@1 (%)

Training Epoch




License Plate Recognition and
Super-resolution from Low-Resolution
Videos by Convolutional Neural Networks

Vojtech Vasek, Vojtech Franc and Martin Urban
Eyedea Recognition, Czech Technical University in Prague




Introduction

CNN for License Plate Recognition (LPR) from low-resolution
videos

CNN based super-resolution generator of LP images




Architecture
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Architecture

y,:X—R"and y_:R" — RPare CNNswith a chain
architecture composed of convolution, max-pooling,
fully-connected and RelLU layers

¢ : RN RKis an aggregation layer converting a sequence
of N K-dimensional vectors to a single K dimensional vector;

P and ¢ __ considered




Architecture

Parameters 6 learned by maximizing the log-likelihood

L7

m . 5
=) (logp( (L’ |x/;6 +Zlogp,-(c{ |%/,0))
=i i—=1




Architecture

Generator:

1 m
F (04, 00, ) =—Z(|xf o613 00), %3 00

+log(l —4(d(e(x);0,),¢/;04),¢; ay)) —|—log€()2j,5j;a)l)>

(@3, @)  min maxF(og, 0, o))




Data: CNN LP recognition

e Video tracks: 31K sequences, avg 72 frames
e Stillimages: 1.4M high res images
e Syntheticimages: Synthetic images

Still images and synthetic images used as first frame. For
consecutive frames, distortion transformation applied

5 images per sequence




Data: Super-resolution Generator

e Still + syntheticimages only

Image distorted by a random affine transform was used as the
desired generator’s output

Input image obtained by same distortion transform
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Experiments

Test accuracy w.r.t. the number of image frames in the
sequence shown for the proposed LprCnn-Avg/Max and the
baselines SfCnn-Avg/Max/Voting.

The left column shows results on low-resolution sequences
and the right column on higher-resolution ones. The top row is
for sequences with increasing image resolution and the
bottom for the decreasing




Gated Fusion Network for Joint Image
Deblurring and Super-Resolution

Xinyi Zhang, Hang Dong, Zhe Hu, Wei-Sheng Lai, Fei Wang, Ming-Hsuan
Yang
Xi'an Jiaotong University, Hikvision Research, University of California,
Merced, Google Cloud




Introduction

Existing super-resolution algorithms cannot reduce motion
blur well

State of the art deblurring algorithms generate clear images
but cannot restore fine details and enlarge the spatial
resolution




Introduction

Solution 1:

Solve the two problems sequentially, i.e., performing image
deblurring followed by super-resolution, or vice versa




Introduction

Problem?

e error accumulation, i.e., the estimated error of the first
model will be propagated and magnified in the second
model

e the two-step network does not fully exploit the
correlation between the two tasks




Architecture

Deblurring Module

Gate Module

¢SRF

SR Feature Extraction Module Reconstruction Module

E Convolutional layer (strided=1) || Convolutional layer (strided=2) .Deconvolu!ional layer ResBlock m Pixel shuffling layer (x2)



Architecture

e Deblurring module: asymmetric residual
encoder-decoder architecture

e Super-resolution feature extraction module: eight
resblocks for high dimensional feature extraction

e Gate module: Fuses features from first two modules

e Reconstruction module: fused features ¢, . are fedinto
eight ResBlocks and two pixel-shuffling layers to enlarge
the spatial resolution by 4X




Architecture

Optimize loss function
min Lsg(H,H) + & Lgepiur (L, L)

Pixel wise MSE loss functionfor bothL ., and L,




Experiments

Matliod - SPsiaig LR-GOPRO 4 x LR-K&hler 4 x

PSNR / SSIM / Time (s) PSNR /SSIM / Time (s)
SCGAN [40] 1.IM 22.7470.783 /0.66 23.19/0.763/0.45
SRResNet [18] 1.5M 24.40/0.827/0.07 24.81/0.781/0.05
EDSR [20] 43M 24.52/0.836/2.10 24.86/0.782/1.43
SCGAN* [40] 1.IM 24.88 /0.836/0.66 24.82/0.79570.45
SRResNet* [18] 1.5M 26.20/0.818/0.07 25.36/0.803 /0.05
ED-DSRN* [45] 25M 26.44/0.873/0.10 25.17/70.799/0.08
DB [21] + SR [18] 13M 24.99/0.827/0.66 25.12/0.800/0.55
SR [18] + DB [21] 13M 25.93/0.850/ 6.06 25.15/0.792/4.18
DB [16] + SR [18] 13M 21.71/0.686/0.14 21.10/0.628 /0.12
SR [18] + DB [16] 13M 24.44/70.807/0.91 24.92/0.778 1 0.54
DB [16] + SR [20] 54M 21.53/0.682/2.18 20.7470.625/ 1.57
SR [20] + DB [16] 54M 24.66/0.827/2.95 25.00/0.784/1.92
DB [21] + SR [20] 54M 25.09/0.834/2.70 25.16/0.801/2.04
SR [20] + DB [21] 54M 26.35/0.869/8.10 25.2470.795/5.81
GFEN (ours) 12M 27.7470.896 /0.07 25.72/0.813/0.05




Experiments

(a) Blurry low-resolution input (e) Input patch (f) DeepDeblur [21] (g) Ours
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