SSVEP BASED BRAIN COMPUTER INTERFACE

NEUROCOM 2018 WORKSHOP, IISc ANSHUL, MARI, SAURABH, SOUMYAJIT, VARSHA

BRAIN COMPUTER INTERFACE

- Communication from brain to external devices.
- Challenges:
 - Robust brain signals
 - Communication
 - Control

MAIN COMPONENTS

Brain Signals

- Stimulus
- Acquisition Device

Computer/ Mobile

- Processing of input
- Command generation

External Device

- Medical
- Appliances
- Human

VARSHA

SSVEP BASED BCI

SSVEP (Steady State Visually Evoked Potential) - Electrical response of brain to flickering visual stimulus.

Principle -

- SSVEP signal has high powers at stimulation frequency.
- SSVEP based BCI detect the frequency of the signal and generate command signal assigned to that frequency.

SAURABH

STIMULUS DESIGN

WIRELESS EEG ACQUISITION AND DATA STREAMING

Raw EEG Signal - example

Filtered EEG Signal - example

SSVEP seen in FFT

Canonical Correlation Analysis

- A way of inferring information from cross-covariance matrices
- X: Time Domain signal
- Y: Flicker Sinusoid and its harmonics

Setup

- Three frequencies displayed on monitor: 8.57Hz, 12 Hz and 15 Hz sampled at 250 Hz
- 30s Data filtered between 8Hz and 30Hz
- Sliding window of 4s and a shift of 0.5s for calculation

Offline, Single Target Multiple Flickers - FFT vs CCA

Target Frequency	FFT	CCA
15 Hz	0.434	0.434
8.57 Hz	0.037	0.679
12 Hz	0.773	0.81

Future Work

- New accuracy measure during period of overlap between two target signals
- Improve the reliability of classical techniques (CCA, FFT threshold based classification)
- Machine learning (SVM, MLP, CNN etc.) with larger dataset
- Augment control commands from EEG with environmental cues obtained using a camera + ML algorithms

THANK YOU

